

Active-Set Methods for Large-Scale NLP

GIAN Short Course on Optimization: Applications, Algorithms, and Computation

Sven Leyffer

Argonne National Laboratory

September 12-24, 2016

Outline

- Introduction and Motivation
- 2 Large-Scale Active-Set Methods for QP
 - Augmented Lagrangians for QPs
 - Filter Methods for Augmentd Lagrangian QPs
- 3 Large-Scale Active-Set Methods for NLP
 - Augmented Lagrangian Filter Method
 - Outline of Convergence Proof
 - Outlook and Conclusions

Active Set Methods for Nonlinear Programming (NLP)

Nonlinear Program (NLP)

minimize
$$f(x)$$
 subject to $c(x) = 0$, $x \ge 0$

where f, c twice continuously differentiable

Definition (Active Set)

Active set: $A(x) = \{i \mid x_i = 0\}$

Inactive set: $\mathcal{I}(x) = \{1, \dots, n\} - \mathcal{A}(x)$

For known optimal active set $A(x^*)$, just use Newton's method

Goal: develop robust, fast, parallelizable active-set methods

Active Set Methods for Nonlinear Programming (NLP)

Motivation: mixed-integer nonlinear optimization: $x_i \in \{0,1\}$

- solve NLP relaxation $x_i \in [0, 1]$
- branch on $\hat{x}_i \notin \{0,1\}$... two new NLPs: $x_i = 0$ or $x_i = 1$
- solve sequence of closely related NLPs

Branch-and-bound solves millions of related NLPs ...

Active-Set vs. Interior-Point Solvers in MINLP

MINOTAUR with FilterSQP vs IPOPT: CPU time

- FilterSQP warm-starts much faster than IPOPT
- similar results for BONMIN (IBM/CMU) solver

Large-Scale Active-Set Methods

Goal of This Lecture

Towards scalable active-set methods for nonlinear optimization

Two Approaches for Large-Scale Active-Set Methods

- Develop methods for large-scale QP
 - ullet Use within SQP framework \Rightarrow readily understood
 - Should work for indefinite QPs
 - Must allow large changes to active set ... not pivoting
 - Should be scalable ... i.e. matrix-free linear algebra
- ② Develop methods for large-scale NLP
 - Ensure suitable for matrix-free linear algebra
 - Properly combine step-computation and globalization strategy

Outline

- Introduction and Motivation
- 2 Large-Scale Active-Set Methods for QP
 - Augmented Lagrangians for QPs
 - Filter Methods for Augmentd Lagrangian QPs
- 3 Large-Scale Active-Set Methods for NLP
 - Augmented Lagrangian Filter Method
 - Outline of Convergence Proof
 - Outlook and Conclusions

Recall: Projected Gradient for Box Constrained QPs

Simpler box constrained QP ...

minimize
$$\frac{1}{2}x^T H x + g^T x =: q(x)$$

subject to $l \le x \le u$

Projected steepest descent $P[x - \alpha \nabla q(x)]$

- piecewise linear path
- large changes to A-set
 ... but slow (steepest descent)

$$x^c$$
 Cauchy point \equiv first minimum of $q(x(\alpha))$, for $\alpha \geq 0$

Theorem: Cauchy points converge to stationary point.

Projected Gradient & CG for Box Constrained QPs

 x^0 given such that $l \le x^0 \le u$; set k = 0

WHILE (not optimal) BEGIN

- find Cauchy point x_k^c & active set $A(x_k^c) := \{i | [x_k^c]_i = I_i \text{ or } u_i\}$
- ② (approx.) solve box QP in subspace $\mathcal{I} := \{1, \dots, n\} \mathcal{A}(x_k^c)$

minimize
$$\frac{1}{2}x^T H x + g^T x$$

subject to $1 \le x \le u$
 $x_i = [x_k^c]_i, \forall i \in \mathcal{A}(x_k^c)$

for
$$x^{k+1}$$
; set $k = k + 1$

END

Cauchy point ⇒ global convergence ... but faster due to CG

How to Include $A^Tx = b$?

Projection onto box is easy, but tough for general QP

$$P_{QP}[z] = \begin{cases} \underset{x}{\text{minimize}} & (x - z)^T (x - z) \\ \text{subject to } A^T x = b \\ & l \le x \le u \end{cases}$$

... as hard as original QP! ... Idea: project onto box only

 \Rightarrow subspace solve $H_{\mathcal{I},\mathcal{I}}x_{\mathcal{I}}=...$ becomes solve with KKT system

$$\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} - A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^T \end{bmatrix} \begin{pmatrix} x_{\mathcal{I}} \\ y \end{pmatrix} = \dots$$

Which gradient / merit function in Cauchy step?

The Augmented Lagrangian

[Arrow & Solow:58], [Hestenes:69], [Powell:69]

minimize
$$L(x, y_k, \rho_k) = f(x) - y_k^T c(x) + \frac{1}{2} \rho_k ||c(x)||^2$$

- As $y_k \to y_*$: $\bullet x_k \to x_*$ for $\rho_k > \bar{\rho}$
 - No ill-conditioning, improves convergence rate
- An old idea for nonlinear constraints ... smooth merit function
- Poor experience with LPs (e.g., MINOS vs. LANCELOT)
- But special structure of LPs (and QPs) not fully exploited

$$f(x) = \frac{1}{2}x^{T}Hx + g^{T}x$$
 & $c(x) = A^{T}x - b$

Augmented Lagrangian for Linear Constraints

 $\forall (\rho, y) \in \mathcal{D}$, minimize $L(x, y, \rho)$ has unique solution $x(y, \rho)$:

- bound constrained augmented Lagrangian converges
- Hessian $\nabla^2_{xx} L(x, y, \rho)$ is positive definite on optimal face
- $\bar{\rho} \approx 2\|H_*\| / \|A_*A_*\| \Rightarrow$ convergence

WHILE (not optimal) BEGIN

• Find $\omega_k \searrow 0$ optimal solution x_k^c of

minimize
$$\frac{1}{2}x^{T}Hx + g^{T}x - y^{T}(A^{T}x - b) + \frac{1}{2}\rho_{k}||A^{T}x - b||^{2}$$

- ② Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- **3** IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$

WHILE (not optimal) BEGIN

• Find $\omega_k \searrow 0$ optimal solution x_k^c of

minimize
$$\frac{1}{2}x^{T}Hx + g^{T}x - y^{T}(A^{T}x - b) + \frac{1}{2}\rho_{k}||A^{T}x - b||^{2}$$

- ② Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- **3** IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- Solve equality QP in subspace $\rightarrow (\Delta x_{\mathcal{I}}, \Delta y)$

$$\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} - A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^T \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = - \begin{pmatrix} [\nabla x L(x_k^c, y_k^c, 0)]_{\mathcal{I}} \\ A^T x_k^c - b \end{pmatrix}$$

WHILE (not optimal) BEGIN

• Find $\omega_k \searrow 0$ optimal solution x_k^c of

minimize
$$\frac{1}{2}x^{T}Hx + g^{T}x - y^{T}(A^{T}x - b) + \frac{1}{2}\rho_{k}||A^{T}x - b||^{2}$$

- ② Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- **3** IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- Solve equality QP in subspace $\rightarrow (\Delta x_{\mathcal{I}}, \Delta y)$

$$\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} - A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = - \begin{pmatrix} [\nabla x L(x_{k}^{c}, y_{k}^{c}, 0)]_{\mathcal{I}} \\ A^{\mathsf{T}} x_{k}^{c} - b \end{pmatrix}$$

5 Line-search on $L(x_k^c + \alpha \Delta x, y_k^c + \alpha \Delta y, \rho)$; **update** x, y, k, ρ

END

WHILE (not optimal) BEGIN

• Find $\omega_k \searrow 0$ optimal solution x_k^c of

minimize
$$\frac{1}{2}x^{T}Hx + g^{T}x - y^{T}(A^{T}x - b) + \frac{1}{2}\rho_{k}||A^{T}x - b||^{2}$$

- ② Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- **3** IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- Solve equality QP in subspace $\rightarrow (\Delta x_{\mathcal{I}}, \Delta y)$

$$\begin{bmatrix} H_{\mathcal{I},\mathcal{I}} - A_{:,\mathcal{I}} \\ A_{:,\mathcal{I}}^{\mathsf{T}} \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = - \begin{pmatrix} [\nabla x L(x_{k}^{\mathsf{c}}, y_{k}^{\mathsf{c}}, 0)]_{\mathcal{I}} \\ A^{\mathsf{T}} x_{k}^{\mathsf{c}} - b \end{pmatrix}$$

5 Line-search on $L(x_k^c + \alpha \Delta x, y_k^c + \alpha \Delta y, \rho)$; **update** x, y, k, ρ

END

1.-3. identify active set while 4. gives fast convergence

Forcing Sequences of Augmented Lagrangian Methods

In general, two competing aims in augmented Lagrangian:

- reduce $h_k := ||A^T x_k b|| \le \eta_k \searrow 0$

Note: QPPAL does not need η_k , see also [Dostal:99], [Delbos&Gilbert:03]

Forcing Sequences of Augmented Lagrangian Methods

In general, two competing aims in augmented Lagrangian:

- reduce $h_k := ||A^T x_k b|| \le \eta_k \searrow 0$
- 2 reduce $\theta_k := \|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k \searrow 0$

Note: QPPAL does not need η_k , see also [Dostal:99], [Delbos&Gilbert:03]

... two arbitrary sequences, η_k, ω_k

... why should one sequence $\{\omega_k\}$, $\{\eta_k\}$ fit all problems ???

Introduce a filter \mathcal{F} for convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff

 - $\theta_k \leq 0.99 \cdot \theta_I \ \forall I \in \mathcal{F}$

Introduce a filter \mathcal{F} for convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff

 - $\theta_k \leq 0.99 \cdot \theta_l \ \forall l \in \mathcal{F}$
- remove redundant entries

Introduce a filter \mathcal{F} for convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff

 - $\theta_k \leq 0.99 \cdot \theta_l \ \forall l \in \mathcal{F}$
- remove redundant entries
- reject new x_k , if $h_k \ge h_l \& \theta_k \ge \theta_l$

Introduce a filter \mathcal{F} for convergence

- list of pairs $(\|A^Tx_I b\|, \|\nabla L_I z_I\|)$
- no pair dominates any other pair
- new x_k acceptable to filter \mathcal{F} , iff

 - $\theta_k \leq 0.99 \cdot \theta_I \ \forall I \in \mathcal{F}$
- remove redundant entries
- reject new x_k , if $h_k \ge h_l \& \theta_k \ge \theta_l$

... an old friend from Chicago (Castellmarre di Stabia)

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x_k^c for filter:

- ② $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x_k^c for filter:

- ② $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

New:
$$\omega_k := 0.1 \max \left\{ \| \nabla L_l - z_l \| \right\}$$
 ... depends on filter

Augmented Lagrangian Cauchy Pointe (Al Capone)

Requirement on Cauchy Point x_k^c for filter:

- ② $\|\nabla L(x_k, y_k, \rho_k) z_k\| \le \omega_k$... optimality of Lagrangian

New:
$$\omega_k := 0.1 \max \left\{ \| \nabla L_l - z_l \| \right\}$$
 ... depends on filter

Consequences of Filter

- ensures that back-tracking line-search will succeed ... if not acceptable then reduce $\omega_{k+1} = \omega_k/2$
- **2** & $\omega_{k+1} = \omega_k/2$ ensure can always find Al Capone

A Filter for QPPAL

WHILE (not optimal) BEGIN

1 Find ω_k optimal solution x_k^c of

minimize
$$\frac{1}{2}x^{T}Hx + g^{T}x - y^{T}(A^{T}x - b) + \frac{1}{2}\rho_{k}||A^{T}x - b||^{2}$$

- **②** Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\| / \|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- **3** IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- **5** Solve equality QP in subspace $\rightarrow (\Delta x_{\mathcal{I}}, \Delta y)$

END

A Filter for QPPAL

WHILE (not optimal) BEGIN

1 Find ω_k optimal solution x_k^c of

minimize
$$\frac{1}{2}x^{T}Hx + g^{T}x - y^{T}(A^{T}x - b) + \frac{1}{2}\rho_{k}||A^{T}x - b||^{2}$$

- ② Find $\mathcal{A}(x_k^c)$ & estimate penalty $\bar{\rho} = 2 \|H_{\mathcal{I}}\|/\|A_{\mathcal{I}}A_{\mathcal{I}}^T\|$
- **3** IF $\bar{\rho} > \rho_k$ THEN update $\rho_{k+1} = \bar{\rho}$ & CYCLE ELSE update multiplier: $y_k^c = y_k \rho_k (A^T x_k^c b)$
- **1** IF (x_k^c, y_k^c) not acceptable THEN $\omega_{k+1} = \omega_k/2$ & CYCLE
- **5** Solve equality QP in subspace $\rightarrow (\Delta x_{\mathcal{I}}, \Delta y)$
- Filter-search along $(x_k^c + \alpha \Delta x, y_k^c + \alpha \Delta y)$; **update** x, y, k

END

Properties of QPPAL

Lemma (Friedlander)

First-order multiplier update & augmented system solve \Leftrightarrow Newton step on first order conditions $(\nabla_x \mathcal{L}, \nabla_y \mathcal{L}) = 0$

Properties of QPPAL

Lemma (Friedlander)

First-order multiplier update & augmented system solve \Leftrightarrow Newton step on first order conditions $(\nabla_x \mathcal{L}, \nabla_y \mathcal{L}) = 0$

Filter version has no restoration phase

- Step 4. IF (x_k^c, y_k^c) not acceptable THEN $\omega_{k+1} = \omega_k/2$ & CYCLE
 - \Rightarrow tighten tolerance of BCL \Rightarrow BCL is restoration phase
 - ⇒ always find Al Capone (Cauchy point)

Properties of QPPAL

Lemma (Friedlander)

First-order multiplier update & augmented system solve \Leftrightarrow Newton step on first order conditions $(\nabla_x \mathcal{L}, \nabla_y \mathcal{L}) = 0$

Filter version has no restoration phase

- Step 4. IF (x_k^c, y_k^c) not acceptable THEN $\omega_{k+1} = \omega_k/2$ & CYCLE
 - \Rightarrow tighten tolerance of BCL \Rightarrow BCL is restoration phase
 - ⇒ always find Al Capone (Cauchy point)
- Augmented system solve is 2nd restoration phase:

$$A_{:,\mathcal{I}}x_{\mathcal{I}} = b - A_{:,\mathcal{A}}x_{\mathcal{A}}$$
 & full step \Rightarrow feasibility

Outline

- Introduction and Motivation
- 2 Large-Scale Active-Set Methods for QP
 - Augmented Lagrangians for QPs
 - Filter Methods for Augmentd Lagrangian QPs
- 3 Large-Scale Active-Set Methods for NLP
 - Augmented Lagrangian Filter Method
 - Outline of Convergence Proof
 - Outlook and Conclusions

Two-Phase Active-Set Framework for NLP

NLP: minimize
$$f(x)$$
 subject to $c(x) = 0, x \ge 0$

repeat

- Compute cheap first-order step $x^{(k)} + s$, e.g. LP/QP solve
- 2 Predict active set from s: $A(x^{(k)} + s) \& I(x^{(k)} + s)$
- Ompute second-order EQP step on active set:

$$\begin{bmatrix} H_k & A_k \\ A_k^T \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \dots \qquad \text{Newton step}$$

where
$$H_k = \nabla^2 L^{(k)}$$
 and $A_k = \left[\nabla c^{(k)} : I^{(k)} \right]$ active c/s

 $\textbf{ § Enforce global convergence \& set } \textit{k} \leftarrow \textit{k} + 1$

until optimal solution found

(Fletcher & de la Maza:89), (Gould & Robinson:10), (Fletcher:11)

Toward scalable nonlinear optimization

 \Rightarrow replace LP/QP ... avoid pivoting, i.e. rank-one matrix updates

Augmented Lagrangian Methods (LANCELOT)

Augmented Lagrangian:

$$L_{\rho} := f(x) - y^{T} c(x) + \frac{\rho}{2} ||c(x)||_{2}^{2}$$
With sequences $\omega_{k} \searrow 0$ and $\eta_{k} \searrow 0$

repeat

- Find ω_k optimal solution $\hat{x}^{(k+1)}$ of minimize $L_{\rho}(x, y^{(k)})$
- else if $\|c(\hat{x}^{(k+1)})\| \leq \eta_k$ then update multipliers: $y^{(k+1)} = y^{(k)} \rho_k c(\hat{x}^{(k+1)})$ else increase penalty: $\rho_{k+1} = 2\rho_k$
- **3** Choose new $(\eta_{k+1}, \omega_{k+1})$; set $k \leftarrow k+1$ **until** (optimal solution found)

see e.g. (Conn, Gould & Toint:95) and (Friedlander, 2002)

Augmented Lagrangian Methods (LANCELOT)

Advantage of Augmented Lagrangian Methods

• Scalable computational kernels

Disadvantages of Augmented Lagrangian Methods

- First-order method in multipliers ⇒ slow convergence
- 2 Arbitrary forcing sequences (ω_k, η_k) ... one fits all NLPs?
- **3** Slow penalty update \Rightarrow slow for infeasible NLPs

Improving augmented Lagrangian methods:

- Add equality QP step for fast Newton-like convergence
- 2 Replace forcing sequence (ω_k, η_k) by filter
- Exploit structure for penalty estimates & use restoration phase

Goal: extend (Friedlander & L., 2008) from QP to NLP

Augmented Lagrangian Filter

Filter \mathcal{F} to replace forcing sequences (ω_k, η_k)

Definition (Augmented Lagrangian Filter)

• Filter \mathcal{F} is a list of pairs $(\eta(x), \omega(x, y))$ where

$$\omega(x,y) := \|\min\{x, \nabla_x L_0(x,y)\}\| \qquad \dots \text{ Lagrangian } L_0$$

$$\eta(x) := \|c(x)\| \qquad \dots \text{ constraint violation}$$

such that no pair dominates another

• A point $(x^{(k)}, y^{(k)})$ acceptable to filter \mathcal{F} iff

$$\eta(x^{(k)}) \le \beta \eta_l$$
 or $\omega(x^{(k)}, y^{(k)}) \le \beta \omega_l - \gamma \eta(x^{(k)}), \quad \forall l \in \mathcal{F}$

Typically:
$$\beta = 0.99, \ \gamma = 0.01$$

Approximate minimization of $L_{\rho}(x, y^{(k)})$ until acceptable to filter

Augmented Lagrangian Filter

•
$$\omega(x, y) := \| \min\{x, \nabla_x L_0(x, y)\} \| \text{ and } \eta(x) := \| c(x) \|$$

Augmented Lagrangian Filter

- $\omega(x, y) := \| \min\{x, \nabla_x L_0(x, y)\} \|$ and $\eta(x) := \| c(x) \|$
- Automatic upper bound: $U = \beta/\gamma \omega_{\text{max}}$, because $\omega \ge 0$

Augmented Lagrangian Filter Method

```
while (x^{(k)}, y^{(k)}) not optimal do
    i=0; initialize \hat{x}^{(j)}=x^{(k)}, \hat{\omega}_i=\omega_k and \hat{\eta}_i=\eta_k
     repeat
          \hat{x}^{(j+1)} \leftarrow \text{approximate argmin}_{x>0} L_{\rho_k}(x, y^{(k)}) \text{ from } \hat{x}^{(j)}
          if restoration switching condition then
                Increase penalty: \rho_{k+1} = 2\rho_k & switch to restoration
                ... find acceptable (x^{(k+1)}, v^{(k+1)}) and set k = k+1
           end
           Provisionally update: \hat{y}^{(j+1)} = y^{(k)} - \rho_i c(\hat{x}^{(j+1)})
          Compute (\hat{\eta}_{i+1}, \hat{\omega}_{i+1}) and set j = j+1
     until (\hat{\eta}_i, \hat{\omega}_i) acceptable to \mathcal{F}_k;
     Set (x^{(k+1)}, y^{(k+1)}) = (\hat{x}^{(j)}, \hat{v}^{(j)})
     Get A^{(k+1)} = \{i : x_i^{(k+1)} = 0\} & solve equality QP
     if \eta_{k+1} > 0 then add (\eta_{k+1}, \omega_{k+1}) to \mathcal{F} ... set k = k+1;
end
```

Approximate Minimization of Augmented Lagrangian

Inner initialization: j = 0 and $\hat{x}^{(0)} = x^{(k)}$

For $j=0,1,\ldots$ terminate augmented Lagrangian minimization,

$$\hat{x}^{(j+1)} \leftarrow \text{approximate argmin } L_{\rho_k}(x, y^{(k)})$$

when standard sufficient reduction holds:

$$\Delta L_{\rho_k} := L_{\rho_k}(\hat{x}^{(j)}, y^{(k)}) - L_{\rho_k}(\hat{x}^{(j+1)}, y^{(k)}) \ge \sigma \hat{\omega}_j \ge 0$$

E.g. Cauchy step on augmented Lagrangian for fixed ρ_k and $y^{(k)}$

More natural than requiring reduction in F.O. error $\hat{\omega}_j \searrow 0$

Switching to Restoration

Goal: Infeasible NLPs \Rightarrow want to find minimize $||c(x)||_2^2$ fast!

Switch to restoration, min ||c(x)||, if

- **1** $\hat{\eta}_j \geq \beta U$... infeasible, or
- ② $\hat{\eta}_j \ge M \min(1, \hat{\omega}_j^{\tau})$, for $\tau \in [1, 2]$... infeasible Fritz-John point, or

$$\eta_{\min} := \min_{I \in \mathcal{F}_L} \{ \eta_I \} > 0$$

Lemma (Finite Return From Restoration)

 $\eta_l \ge \eta_{\min} \ \forall l \in \mathcal{F}_k \Rightarrow \exists \ x^{(k+1)}$ acceptable or restoration converges

Second-Order Steps & KKT Solves

- $\mathbf{x}^{(k+1)} \leftarrow \underset{\mathbf{x} \geq 0}{\text{minimize}} \ L_{\rho}(\mathbf{x}, \mathbf{y}^{(k)}) \dots \text{ predicts } \mathcal{A}(\mathbf{x}^{(k+1)})$
- Accelerate convergence, by solving EQP with $\Delta x_A = 0$:

$$\begin{bmatrix} \tilde{H}_{k+1} & \tilde{A}_{k+1} \\ \tilde{A}_{k+1}^T \end{bmatrix} \begin{pmatrix} \Delta x_{\mathcal{I}} \\ \Delta y \end{pmatrix} = \begin{pmatrix} -\nabla f_{\mathcal{I}}^{(k+1)} \\ -c(x^{(k+1)}) \end{pmatrix}$$

where \tilde{H}_{k+1} is "reduced" Hessian wrt bounds $(\Delta x_{\mathcal{A}} = 0)$

• Line-search: $\alpha_{k+1} \in \{0\} \cup [\alpha_{\min}, 1]$ such that

$$(x^{(k+1)}, y^{(k+1)}) = (\hat{x}^{(k+1)}, \hat{y}^{(k+1)}) + \alpha_{k+1}(\Delta x^{(k+1)}, \Delta y^{(k+1)})$$

 \mathcal{F}_k -acceptable

... $\alpha_{k+1} = 0$ OK, because $(\hat{x}^{(k+1)}, \hat{y}^{(k+1)})$ was acceptable

Augmented Lagrangian Filter Method

```
while (x^{(k)}, y^{(k)}) not optimal do
    i=0; initialize \hat{x}^{(j)}=x^{(k)}, \hat{\omega}_i=\omega_k and \hat{\eta}_i=\eta_k
     repeat
          \hat{x}^{(j+1)} \leftarrow \text{approximate argmin}_{x>0} L_{\rho_k}(x, y^{(k)}) \text{ from } \hat{x}^{(j)}
          if restoration switching condition then
                Increase penalty: \rho_{k+1} = 2\rho_k & switch to restoration
                ... find acceptable (x^{(k+1)}, v^{(k+1)}) and set k = k+1
           end
           Provisionally update: \hat{y}^{(j+1)} = y^{(k)} - \rho_i c(\hat{x}^{(j+1)})
          Compute (\hat{\eta}_{i+1}, \hat{\omega}_{i+1}) and set j = j+1
     until (\hat{\eta}_i, \hat{\omega}_i) acceptable to \mathcal{F}_k;
     Set (x^{(k+1)}, y^{(k+1)}) = (\hat{x}^{(j)}, \hat{v}^{(j)})
     Get A^{(k+1)} = \{i : x_i^{(k+1)} = 0\} & solve equality QP
     if \eta_{k+1} > 0 then add (\eta_{k+1}, \omega_{k+1}) to \mathcal{F} ... set k = k+1;
end
```

Overview of Convergence Proof

Assumptions

- Functions f(x) and c(x) twice continuously differentiable
- $||c(x)|| \to \infty$ whenever $||x|| \to \infty$... ignore EQP for analysis

Outline of Convergence Proof

- Filter $\mathcal{F}_k \Rightarrow$ iterates, $x^{(k)}$ remain in compact set
- 2 Inner iteration is finite $\Rightarrow \exists$ convergent subsequence
- **3** Mechanism of filter \Rightarrow limit points are feasible
- Show limit points are stationary in two cases:
 - Bounded penalty ... rely on filter
 - 2 Unbounded penalty ... classical augmented Lagrangian

Remark

Do not assume compactness, or bounded multipliers!

Iterates Remain in Compact Set

Lemma (All Iterates Remain in Compact Set)

All major and minor iterates, $x^{(k)}$ and $\hat{x}^{(j)}$ are in a compact set, C.

Proof.

- Upper bound on filter $(U = \beta/\gamma \omega_{\text{max}})$ $\Rightarrow \|c(x^{(k)})\| \leq U$ for all major iterates
- ② Switching condition $(\hat{\eta}_j \leq \beta U)$ $\Rightarrow ||c(\hat{x}^{(j)})|| \leq U$ for all minor iterates
- Feasibility restoration minimizes ||c(x)|| $\Rightarrow ||c(x^{(k)})||$ bounded
- $\Rightarrow \|c(^{(k)})\| \leq U \text{ and } \|c(\hat{x}^{(j)})\| \leq U$

c(x) twice continuously differentiable & $\|c(x)\| \to \infty$ if $\|x\| \to \infty$

$$\Rightarrow x^{(k)}$$
, $\hat{x}^{(j)} \in C$, compact

Finiteness of Inner Iteration

Lemma (Finiteness of Inner Iteration)

The inner iteration is finite.

Proof. Assume inner iteration not finite $\Rightarrow \exists \hat{x}^* = \lim \hat{x}^{(j)} \in C$

- **1** Fixed penalty: $\rho_k \equiv \rho < \infty$
- ② Sufficient reduction of $L_{\rho}(x, y^{(k)})$

$$\Rightarrow \Delta L_{\rho} \geq \sigma \hat{\omega}_{i}$$
; assume $\hat{\omega}_{i} \geq \bar{\omega} > 0$

$$\Rightarrow L_{\rho}(\hat{x}^{(j)}, y^{(k)})$$
 unbounded

... but
$$||c(\hat{x}^{(j)})||$$
, ρ , and $f(x)$ bounded

- **3** Contradiction $\Rightarrow \hat{\omega}_i \rightarrow 0$, and $\hat{\omega}_* = 0$
- **9** Switching: $\hat{\eta}_i < M\hat{\omega}_i \Rightarrow \hat{\eta}_* \leq M\hat{\omega}_*$

 \Rightarrow $(\hat{\eta}_*, \hat{\omega}_*) = (0, 0)$ and \exists filter acceptable points near (0, 0)

Feasible Limit Points

Lemma (Feasible Limit Points)

In outer iteration, feasibility error $\eta_k = ||c(x^{(k)})|| \to 0$.

Proof. Two cases:

- ② $\eta_k > 0$, subsequence $\forall k \geq K_0$ see (Chin & Fletcher, 2003) ... envelope $\Rightarrow \eta_k \rightarrow 0$

... standard filter argument

First-Order Optimality

Lemma (First-Order Stationarity)

First-order optimality $\omega_k = \|\min\{x^{(k)}, \nabla_x L_0^{(k)}\}\| \to 0$.

Proof. (1) $\rho_k \leq \bar{\rho} < \infty$ and (2) ρ_k unbounded: classical proof

- Assume $\omega_k \geq \bar{\omega} > 0$ & seek contradiction $\Rightarrow \Delta L_{\bar{\rho}}^{in} = L_{\bar{\rho}}(x^{(k)}, y^{(k)}) L_{\bar{\rho}}(x^{(k+1)}, y^{(k)}) \geq \sigma \omega_k \geq \sigma \bar{\omega} > 0$
- First-order multiplier update, $y^{(k+1)} = y^{(k)} \bar{\rho}c(x^{(k+1)})$

$$\Delta L_{\bar{\rho}}^{out} = L_{\bar{\rho}}(x^{(k)}, y^{(k)}) - L_{\bar{\rho}}(x^{(k+1)}, y^{(k+1)})$$

$$= \Delta L_{\bar{\rho}}^{in} - \bar{\rho} \|c(x^{(k+1)})\|_{2}^{2}$$

$$\geq \sigma \bar{\omega} - \rho \|c(x^{(k+1)})\|_{2}^{2}$$

• Feasible limit: $c(x^{(k+1)}) \to 0 \Rightarrow \|c(x^{(k+1)})\|_2^2 \le \sigma \frac{\bar{\omega}}{2\rho}, \ \forall k \ge \bar{K}$ $\Rightarrow \Delta L_{\bar{\rho}}^{out} \ge \sigma \frac{\bar{\omega}}{2}, \ \forall k \ge \bar{K}$ outer iteration sufficient reduction

First-Order Optimality (Proof cont.)

- Sufficient reduction at outer iterations: $\Delta L_{\bar{\rho}}^{out} \ge \sigma_{\bar{2}}^{\bar{\omega}}$ $\Rightarrow L_{\bar{\rho}}(x,y) = f(x) - y^{T}c(x) + \frac{\rho}{2}\|c(x)\|_{2}^{2}$ unbounded
- $x^{(k)} \in C$ compact $\Rightarrow f(x)$ and $||c(x)||_2^2$ bounded
- Show $y^T c(x) \leq M$ bounded:
 - Feasibility Lemma $\Rightarrow \eta_k = \|c(x^{(k)})\| \to 0$
 - Filter acceptance: Monotone sub-sequences $\eta_k \leq \beta \eta_{k-1}$
 - FO multiplier update: $y^{(k)} = y^{(0)} \bar{\rho} \sum_{l} c^{(l)}$

$$\Rightarrow y^{(k)^{T}} c(x^{(k)}) = \left(y^{(0)} - \bar{\rho} \sum_{l} c^{(l)}\right)^{T} c^{(k)}$$

$$\leq \left(1 + \bar{\rho} \sum_{l} \eta_{l}\right) \eta_{k} \leq \eta_{0} \left(\beta^{k} + \bar{\rho} \sum_{l} \beta^{l+k}\right) \leq M$$

• Contradiction: $L_{\bar{\rho}}(x,y) = f(x) - y^T c(x) + \frac{\rho}{2} ||c(x)||_2^2$ bounded $\Rightarrow \omega_k \to 0$... first-order stationarity

Key Computational Kernels

- lacksquare Filter stopping rule readily included in minimization of $L_{
 ho}$
 - $\nabla L_{\rho}(\hat{x}^{(j+1)}, y^{(k)}) = \nabla L_{0}(\hat{x}^{(j+1)}, \hat{y}^{(j+1)}) = \hat{\omega}_{j+1}$
- Approximate minimization of augmented Lagrangian
 - projected gradient plus CG on subspace

$$\begin{aligned} \left[H_k + \rho A_k A_k^T \right]_{\mathcal{I}, \mathcal{I}} \Delta x_{\mathcal{I}} &= -\nabla L_{\rho}(x^{(k)}, y^{(k)}) \\ \Leftrightarrow \left[\tilde{A}_k^T - \rho^{-1} I \right] \begin{pmatrix} \Delta x_{\mathcal{I}} \\ u \end{pmatrix} &= \begin{pmatrix} -\nabla L_{\rho}(x^{(k)}, y^{(k)}) \\ 0 \end{pmatrix} \end{aligned}$$

- KKT system solve
 - $\bullet \ \left[\begin{array}{c} \tilde{H}_k \ \tilde{A}_k \\ \tilde{A}_k^T \end{array} \right] \left(\begin{array}{c} \Delta x_{\mathcal{I}} \\ \Delta y \end{array} \right) = \dots$
 - indefinite reduced Hessian ⇒ inertia control
- \Rightarrow exploit scalable matrix-free solvers based on H_k, A_k

Summary and Teaching Points

Presented Active-Set Method for QP/NLP

- Augmented Lagrangian Filter for QP or NLP
 - Identify active set via augmented Lagrangian step
 - Perform EQP solve
 - Use filter instead of forcing sequences
- Main computational kernels are parallelizable
 - Bound-constrained optimization via projected-gradient with CG
 - KKT-system solves, using GMRES or MINRES